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Abstract
Incremental learning (IL) aims to sequentially
learn new tasks while mitigating catastrophic for-
getting. Among various IL strategies, parameter-
isolation methods stand out by using mask tech-
niques to allocate distinct parameters to each
task, explicitly addressing forgetting. However,
existing approaches often disregard parameter
dependencies, resulting in an over-reliance on
newly allocated parameters. To address this is-
sue, we propose Probabilistic Group Mask se-
lection (PGM), a group-wise approach that cap-
tures parameter dependencies by exploring can-
didate masks within each group. Specifically,
PGM partitions parameters into groups with mul-
tiple candidate masks, assigning probabilities to
these masks and leveraging Gumbel-Softmax for
differentiable sampling, enabling efficient opti-
mization of the discrete mask selection process.
Our theoretical analysis demonstrates that incor-
porating parameter dependencies enhances sub-
network selection. Experiments conducted on
standard benchmarks confirm its superior effec-
tiveness compared to existing IL approaches. The
source code is available at: https://github.
com/njustkmg/ICML25-PGM.

1. Introduction
Incremental Learning (IL) enables models to incrementally
acquire new knowledge, making it highly applicable to do-
mains such as autonomous driving (Fang et al., 2024a) and
healthcare (Lesort et al., 2020). A good IL model is ex-
pected to keep the memory of all seen tasks upon learning
new knowledge (Hocquet, 2021; Yang et al., 2023a). How-
ever, due to the limited access to previous data, the learning
phase is naturally sensitive to the current task, hence result-
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(a) Isolation vs. Dependency
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Figure 1. Illustration of different parameter selection strategies.
(a) Isolation-based methods evaluate parameters independently
and select the top-ranked ones, while dependency-aware methods
consider parameter interactions, enabling joint selection based
on their collective contributions. (b) The dependency-aware ap-
proach, exemplified by PGM, demonstrates enhanced ACC and
CAP compared to isolation-based methods like WSN, underscor-
ing the advantages of incorporating parameter dependencies.

ing in a major challenge in IL called Catastrophic Forgetting
(CF) (Lange et al., 2022; Zhou et al., 2022), which refers
to the drastic performance drop on past knowledge after
learning new knowledge.

Several promising approaches have been proposed for IL
that focus on mitigating CF (Hung et al., 2019; Kumar
et al., 2021; Yoon et al., 2018a; Liu et al., 2024; Yang et al.,
2019; 2023b). Among these, parameter isolation achieves
complete prevention of catastrophic forgetting (Wortsman
et al., 2020; Serrà et al., 2018; Hu et al., 2024), by masking
distinct sub-networks for each task within a shared model
architecture. However, a key challenge lies in determining
the optimal allocation of parameters for each task, balanc-
ing the preservation of prior knowledge with adaptation to
new tasks. Several approaches rely on handcrafted crite-
ria to assess parameter importance, such as the absolute
magnitude of the weights (Mallya & Lazebnik, 2018) or
gradient information (Konishi et al., 2023), but these prox-
ies lead to suboptimal allocations due to not considering
their true contributions to the task. Alternatively, parame-
ters can be assigned learnable weights (Mallya et al., 2018;
Kang et al., 2022; Hu et al., 2024), which are updated via
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gradients during training to more effectively capture their
true importance, enabling more precise parameter alloca-
tion. However, existing parameter selection methods, as
illustrated in the left part of Figure 1a, independently score
and rank each parameter, offering simplicity but neglect-
ing critical dependencies among them. As established in
Theorem 3.2, neglecting parameter dependencies and their
collective contributions leads to suboptimal sub-network. In
contrast, dependency-aware methods, shown in the right part
of Figure 1a, explicitly account for parameter dependencies,
facilitating joint selection that optimizes their combined con-
tributions. According to Definition 3.1, incorporating these
dependencies throughout the learning sequence enhances
parameter reuse, reducing the need for newly introduced
parameters in each task. As demonstrated in Figure 1b,
this dependency-aware reuse enables each task to achieve
comparable or superior performance with fewer additional
parameters, resulting in more compact sub-networks. This
reduction in model expansion preserves more capacity for
future tasks, facilitating better adaptability to unseen tasks
while maintaining scalability.

Therefore, we propose Probabilistic Group Mask selection
(PGM), which models the mask selection process as a prob-
abilistic sampling process. Specifically, PGM organizes
parameters into groups, with each group containing mul-
tiple candidate masks, and assigns a probability to each
candidate mask. This probabilistic sampling process is repa-
rameterized using the Gumbel-Softmax technique (Jang
et al., 2017), enabling a deterministic approximation of the
selection process and facilitating end-to-end optimization
through gradient. Our theoretical analysis demonstrates
that incorporating parameter dependencies improves sub-
network selection by capturing synergies between parame-
ters, leading to more effective utilization of model capacity.
Extensive experiments on widely-used datasets demonstrate
that our method achieves competitive performance.

2. Preliminaries
Task-incremental learning (TIL) is a key paradigm in incre-
mental learning, where the task identity t is available during
the inference phase. This enables the model to specialize
its processing to each task as it learns sequentially from
a stream of tasks {T1, T2, · · · , TN}. For each task Tt, the
model F(·, θ), with parameters θ, learns from the dataset
Dt = {Xt, Yt}, where Xt is the input feature set and Yt is
the corresponding label set. The objective for task t is to
minimize the task-specific loss, expressed as:

θ∗ = argmin
θ

1

nt

nt∑
i=1

L(F(xt
i; θ), y

t
i),

where L represents the loss function and nt is the number
of samples in Dt.

In TIL, parameter isolation methods have proven to be
highly effective in mitigating catastrophic forgetting. These
methods leverage the over-parameterization of neural net-
works to create task-specific subnetworks, isolating the pa-
rameters dedicated to each task. This approach minimizes
interference between tasks and preserves performance on
previously learned tasks, while still allowing for flexibil-
ity in learning future tasks. Mathematically, for a given
set of model parameters θ, a binary mask m∗

t defines the
subnetwork for task t, constrained by ∥m∗

t ∥ ≤ c, where
c represents the subnetwork’s capacity. The optimization
problem is formulated as:

m∗
t = argmin

mt∈{0,1}|θ|

1

nt

nt∑
i=1

L(F(xt
i; θ ⊙mt), y

t
i)

− L(F(xt
i; θ), y

t
i) s.t. ∥m∗

t ∥ ≤ c,
(1)

where L denotes the task-specific loss function, ⊙ denotes
elementwise multiplication. The goal is to find the optimal
mask m∗

t that isolates the task-specific subnetwork, ensuring
that it achieves task performance comparable to the full
network, while adhering to the capacity constraint.

3. Method
3.1. Theoretical Understanding

To enhance subnetwork selection, we propose a group-wise
strategy that incorporates parameter dependencies, improv-
ing both parameter reuse and error reduction. By structuring
the parameter selection process into groups, this approach
facilitates the joint evaluation of parameter dependencies
within each group, leading to more accurate and effective
subnetwork optimization.
Definition 3.1 (Parameter Reuse with Dependency). Let K
be the set of parameters, and let parameter dependencies
that influence their reuse across tasks. The total parameter
reuse R across N tasks is defined as:

R =

|θ|∑
i=1

I

(
N∑
t=1

mt,i > 0

)
,

where I(·) is the indicator function, and mt,i denotes the ef-
fective mask for parameter θi in task t, which is determined
by the joint contribution of K parameters:

mt,i = I

st,i +
∑

j∈NK
i

ρj,i

 > τ

 .

In this definition, st,i represents the independent score of
parameter θi for task t, ρj,i quantifies the dependency be-
tween parameter θi and θj , and NK

i is the set of K − 1
parameters most strongly interacting with θi. The threshold
τ determines the selection criterion for parameter reuse.
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According to Definition 3.1, when K = 1, the dependency
term is absent, resulting in parameter selection based solely
on st,i, which corresponds to independent selection. In
contrast, when K > 1, the joint evaluation of dependencies
with K − 1 additional parameters increases the probability
of reusing θi across tasks, thereby achieving a higher R.

Theorem 3.2 (Error Reduction via Dependency). Divid-
ing N parameters into N/K groups of size K reduces the
uncertainty in parameter selection by leveraging local inter-
actions within each group. The probability of an incorrect
selection for a parameter combination C under the group-
wise strategy is given by:

Pwrong(C) =
N/K∏
b=1

Φ

(
−
∑

i∈S∗
b

TS(θi)−
∑

i∈Cb
TS(θi)

√
Kσ

)
,

where S∗
b denotes the ideal parameter combination within

group b, Cb represents the selected parameter combination,
TS(·) is the ideal score, σ is the standard deviation of the
noise, and Φ(·) denotes the cumulative distribution function.

By explicitly modeling parameter dependencies, the group-
wise approach reduces evaluation error by capturing interac-
tions that contribute to task-specific performance. Theorem
3.2 demonstrates that incorporating dependencies into the
selection process lowers the likelihood of errors by ensur-
ing a more informed evaluation. Structuring parameters
into groups facilitates this joint consideration, avoiding the
limitations of independent evaluations and leading to more
accurate subnetwork selection. The detailed proof can be
found in the Appendix A.

3.2. Probabilistic Group Mask Selection

Building on the theoretical results above, the challenge of
dividing K parameters into groups is reframed as the task of
selecting optimal subsets within each group to achieve spe-
cific objectives. This method introduces parameter grouping,
reformulates the problem as a sampling process, and utilizes
Gumbel-Softmax for efficient optimization. Furthermore, an
adaptive initialization leverages the transferability of prior
task distributions to facilitate task-specific adaptations.

Parameter Group: Consider a parameter group consisting
of K parameters, denoted as W ∈ R1×K . The goal is to
determine the optimal binary mask M∗ ∈ B1×K of the
same dimension. This leads to a discrete candidate set SK ,
which contains

∑K−1
j=1

(
K
j

)
possible masks, expressed as:

SK = {M∗ ∈ B1×K} =

K−1⋃
j=1

{Mj,k},

where {Mj,k} denotes the set of masks with exactly j
nonzero elements, and k indexes the specific subsets. The

model comprises numerous parameter groups, denoted as
θl, each necessitating the selection of a corresponding mask
Ml. To identify an optimal subnetwork, Equation (1) can be
reformulated as:

{M∗
l }t = argmin

{Ml|Ml∈SK}

1

nt

nt∑
i=1

[
L
(
F(xt

i; θ ⊙ {Ml}), yti
)

− L
(
F(xt

i; θ), y
t
i

)]
, (2)

where the operator ⊙ represents elementwise multiplication.

Identifying the optimal set of masks {M∗
l } poses signifi-

cant challenges due to the nondifferentiable nature of mask
selection and the high dimensionality of model parameters.
To address these difficulties, the mask selection problem
is reformulated as a sampling-based process, thereby en-
abling efficient optimization while preserving the capacity
for task-specific adaptability.

Sampling Process: Let W ∈ R1×K denote a parameter
groups containing K parameters. Identifying the exact op-
timal mask for such a group is inherently complex due to
interdependencies with other parameter groups. To address
this, an independent sampling approach is employed for
each group, providing a tractable and efficient means of eval-
uating overall model quality (Fang et al., 2024b). Empirical
studies further demonstrate that model performance tends to
stabilize when K surpasses a certain threshold, highlighting
the scalability of the proposed sampling strategy.

To enable efficient sampling of M , two categorical distri-
butions are defined: p1, p2, . . . , pj , which determine the
number of nonzero elements, and qj1, qj2, . . . , qjk, which
select a specific mask from the candidate set. These distribu-
tions are normalized such that

∑
j pj = 1 and

∑
k qjk = 1.

Masks that demonstrate strong performance are assigned
higher probabilities, guiding subsequent sampling toward
promising candidates. Through iterative sampling and prob-
ability updates, the process converges to a distribution that
prioritizes high-performing masks, thereby increasing the
likelihood of discovering an optimal subnetwork. This refor-
mulates Equation (2) as a probabilistic sampling problem:

{q∗(Mjk | j)}t = argmin
p(j),q(Mjk|j)

1

nt

nt∑
i=1

Ej∼p(j),Mi∼q(Mjk|j)[
L
(
F(xi,t; θ ⊙ {Mjk}), yi,t

)
− L

(
F(xi,t; θ), yi,t

)]
.

(3)

Here, p(j) defines the probability distribution over the num-
ber of nonzero elements in a mask, and q(Mjk | j) rep-
resents the conditional probability of selecting a specific
mask Mjk given j. While gradient descent can be applied
to optimize objectives when gradients are available, the in-
herently nondifferentiable nature of categorical sampling
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presents significant challenges. This issue arises because
sampling from a categorical distribution involves discrete
operations, which lack the gradient information required for
optimization, thereby impeding the direct use of standard
optimization techniques.

Differentiable Sampling of Masks: To address the two-
stage sampling problem involving p(j) and q(Mjk | j), the
Gumbel-Softmax reparameterization technique is employed.
This method facilitates differentiable sampling by providing
a continuous approximation to the discrete process. Specif-
ically, for p(j), the discrete sampling is relaxed into the
following differentiable form:

p̃(j) =
exp((log(p(j)) + gj)/τ1)∑
j′ exp((log(p(j

′)) + gj′)/τ1)
,

where gj are independent samples from the Gumbel dis-
tribution − log(− log(U)), with U ∼ Uniform(0, 1), and
τ1 > 0 is a temperature parameter that controls the degree
of approximation. As τ1 → 0, p̃(j) approaches a one-hot
vector. Similarly, the sampling of a specific mask Mjk for
q(Mjk | j) can be relaxed using the same reparameteriza-
tion technique. The relaxed form is expressed as:

q̃(Mjk | j) = exp((log(q(Mjk | j)) + gk)/τ2)∑
k′ exp((log(q(Mj,k′ | j)) + gk′)/τ2)

,

where gk introduces stochasticity, and τ2 controls the
smoothness of mask selection. These reparameterized forms
ensure that the sampling process remains differentiable, en-
abling efficient optimization of p(j) and q(Mjk | j) using
gradient-based methods.

Using these reparameterized distributions, the final differ-
entiable mask M̃ is constructed by integrating the soft se-
lection over j with the conditional distribution over masks.
This results in a weighted combination of the candidate
masks, expressed as:

M̃ =
∑
j

p̃(j)
∑
k

q̃(Mjk | j)Mjk. (4)

The reparameterization ensures that the sampling process is
fully differentiable, allowing p(j) and q(Mjk | j) to be opti-
mized through standard gradient-based methods. Instead of
directly optimizing these probabilities, their corresponding
logits πj and ϕk

j are learned. Scaling factors κ1 and κ2 are
applied to adjust the sharpness of the distributions, with the
probabilities computed as follows:

p(j) =
exp(πj · κ1)∑
j′ exp(πj′ · κ1)

, q(Mjk|j) =
exp(ϕk

j · κ2)∑
k′ exp(ϕk′

j · κ2)
.

This formulation enables the construction of the differen-
tiable mask M̃ , efficiently addressing the sampling prob-
lem outlined in Equation (3). By balancing computational

efficiency and flexibility, this approach facilitates precise
mask selection while maintaining scalability. For task t, the
optimal mask is obtained by selecting the combination of
j and k that maximizes the joint probability of p(j) and
q(Mjk | j), formally expressed as:

M∗
t = {Mjk | argmax p(j)q(Mjk | j)}. (5)

By design, the mask selection process adapts dynamically
to task-specific requirements, focusing on the most relevant
parameter subsets. This adaptability not only enhances inter-
pretability but also reduces the risk of suboptimal selections,
ensuring effective utilization of model capacity across tasks.

Task-Informed Mask Initialization: To effectively ini-
tialize the probability distributions p(j) and q(Mjk | j)
for task t, this method incorporates the similarities be-
tween the current task mask and those of all previous tasks
(M1,M2, . . . ,Mt−1). By leveraging these similarities, the
initialization process allows previously learned knowledge
to directly influence the sampling process. This approach
not only facilitates efficient parameter reuse but also ensures
that the model retains adaptability to task-specific require-
ments. The contribution of each prior task is weighted based
on its similarity to the current task, thereby shaping the prob-
ability distributions in a task-aware manner. To quantify this
influence, the similarity between current task mask M̂t and
prior task mask Mn (n ∈ {1, . . . , t− 1}) is computed as:

sim(Mn, M̂t) = MnM̂
⊤
t − 1

|S|
∑
i

(MiM̂
⊤
t ).

In this formulation, the similarity is measured using the
inner product between Mn and M̂t, with an adjustment to
remove the mean similarity across all candidate masks. This
adjustment is critical as it normalizes the similarities, re-
ducing the influence of global variations across the mask
space and focusing on meaningful relationships between the
current and prior tasks. Building on this similarity measure,
the initialization process prioritizes candidate masks with
higher similarity to previous tasks by adjusting their prob-
abilities accordingly. Specifically, the logits for p(j) and
q(Mjk | j) are updated using the aggregated similarity:

π′
t = πt +

t−1∑
n=1

sim(Mn, M̂t) · σ(πn) · α1,

ϕ′
t = ϕt +

t−1∑
n=1

sim(Mn, M̂t) · σ(ϕn) · α2.

Here, σ(πn) and σ(ϕn) denote the standard deviations of
the logits for task n, and the hyperparameters α1 and α2

determine the extent to which prior task information influ-
ences the current initialization. By incorporating both the
similarity and variability of prior task distributions, the ini-
tialization process achieves a balance between knowledge
transfer and task-specific differentiation.
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Table 1. Performance comparison of PGM with other IL methods across three datasets. Under the same conditions, ACC is prioritized over
BWT, as it reflects the overall balance between network stability and plasticity, whereas BWT solely quantifies the degree of forgetting.

Method CIFAR-100 Split CIFAR-100 Superclass TinyImageNet

ACC (%) ↑ CAP (%)↓ BWT (%) ↑ ACC (%) ↑ CAP (%)↓ BWT (%) ↑ ACC (%) ↑ CAP (%)↓ BWT (%) ↑
Multitask 79.75 (±0.38) 100.0 - 61.00 (±0.20) 100.0 - 77.10 (±1.06) 100.0 -

La-MaML 71.37 (±0.67) 100.0 -5.39 (±0.53) 54.44 (±1.36) 100.0 -6.65 (±0.85) 66.90 (±1.65) 100.0 -9.13 (±0.99)
GPM 73.18 (±0.52) 100.0 -1.17 (±0.27) 57.33 (±0.37) 100.0 -0.37 (±0.12) 67.39 (±0.47) 100.0 -1.45 (±0.22)
FS-DGPM 74.33 (±0.41) 100.0 -2.71 (±0.21) 58.81 (±0.34) 100.0 -2.97 (±0.35) 70.41 (±0.87) 100.0 -2.11 (±0.84)
RP2F 75.89 (±0.45) 100.0 -0.82 (±0.13) 60.11 (±0.23) 100.0 -0.32 (±0.02) 70.32(±0.29) 100.0 -1.05 (±0.43)
PackNet 72.39 (±0.37) 96.38 (±0.38) 0.0 58.78 (±0.52) 126.65 (±0.00) 0.0 55.46 (±1.22) 188.67 (±0.00) 0.0
SupSup 75.47 (±0.33) 129.00 (±0.00) 0.0 61.70 (±1.31) 162.49 (±0.00) 0.0 59.60 (±1.05) 214.52 (±0.89) 0.0
WSN 76.38 (±0.34) 99.13 (±0.48) 0.0 61.79 (±0.23) 80.93 (±1.58) 0.0 69.06 (±0.82) 92.03 (±1.80) 0.0
SPG 77.12(±0.42) 90.24 (±0.89) -1.02 (±0.38) 62.04 (±0.39) 75.93 (±0.97) -0.53 (±0.17) 70.16 (±0.74) 85.53 (±1.19) -1.26 (±0.17)

PGM 77.29(±0.31) 63.51(±0.98) 0.0 62.56(±0.71) 50.38(±1.05) 0.0 70.99(±0.54) 80.26(±0.86) 0.0

4. Experiments
We validate our method across multiple benchmark datasets,
comparing its performance against relevant incremental
learning baselines. For all experiments presented in this
paper, we utilize TIL with a multi-head configuration. The
experimental setups are carefully aligned with those em-
ployed in recent works (Kang et al., 2022). The evaluation
encompasses comprehensive performance comparisons, ab-
lation studies examining module effectiveness, group size
variations, and adaptability to different training paradigms,
as well as an in-depth analysis of computational efficiency,
parameter dependencies, and parameter distribution.

4.1. Setup

Datasets and Evaluation Metrics: We use three different
popular datasets, including Split CIFAR-100 (Krizhevsky &
Hinton, 2009), CIFAR-100 Superclass (Yoon et al., 2018b),
Split TinyImageNet (Krizhevsky et al., 2017). To evaluate
IL methods, we evaluate all methods on three metrics: ACC,
CAP, BWT. ACC measures the average classification per-
formance across all tasks, defined as ACC = 1

T

∑T
i=1 AT,i,

where AT,i represents the test accuracy for task i after train-
ing on task T . CAP quantifies the proportion of nonzero
weights and prime masks used for all tasks, calculated
as CAP = (1 − S) + (1 − α)T × 1

32 , where S is the
sparsity of MT and α (approximately 0.78) is the aver-
age compression rate achieved through 7-bit Huffman en-
coding. Finally, BWT assesses the degree of forgetting
in incremental learning scenarios, expressed as BWT =

1
T−1

∑T−1
i=1 (AT,i −Ai,i).

Baselines: To thoroughly evaluate the performance of the
proposed PGM, a comparison is conducted with several
prevalent incremental learning baselines. Specifically, (1)
parameter isolation methods, including PackNet (Mallya &
Lazebnik, 2018), SupSup (Wortsman et al., 2020),and WSN
(Kang et al., 2022), SPG (Konishi et al., 2023); (2) parameter

regularization techniques such as La-MAML (Joseph & Gu,
2021), GPM (Saha et al., 2021), FS-DGPM (Deng et al.,
2021), RP2F (Sun et al., 2024), and MTD (Wen et al., 2024);
and (3) the naive sequential training strategy, referred to as
FINETUNE, in addition to multitask learning (MTL), which
serve to establish lower and upper bounds for performance.

Implementation Details: To ensure a fair comparison,
we follow the experimental protocols from (Kang et al.,
2022), maintaining consistent backbone architectures across
datasets. For instance, we use a modified AlexNet for Split
CIFAR-100 and a customized LeNet for CIFAR-100 Su-
perclass. Training employs the Adam optimizer with a mo-
mentum of 0.9, with each task trained for a fixed number of
epochs to ensure convergence. Experiments are conducted
using PyTorch on a high-performance computing platform
with NVIDIA 4090 GPUs. Additional hyperparameter set-
tings are provided in the Appendix B.

4.2. Main Results

Overall Performance: The performance of the proposed
PGM is rigorously compared with several state-of-the-art
methods across three key evaluation metrics on three promi-
nent benchmark datasets, as presented in Table 1. PGM con-
sistently outperforms all existing approaches, achieving the
highest ACC of 77.29%, 62.56%, and 70.99%, respectively.
These results demonstrate the efficacy of PGM in address-
ing the challenges associated with IL. In particular, as high-
lighted in Table 1, (1) In comparison to parameter regulariza-
tion methods, both PGM and parameter isolation approaches
exhibit zero forgetting, effectively preventing catastrophic
forgetting across tasks. Notably, PGM achieves a superior
ACC, suggesting that it not only mitigates forgetting but
also enhances overall model performance; (2) When com-
pared to parameter isolation methods, PGM achieves better
ACC with a smaller set of parameters, indicating a more effi-
cient use of model resources. As shown in Figure 2a, PGM
outperforms WSN in terms of accuracy across most tasks,
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Table 2. Results of ablation studies highlighting the contributions of the Group and Mask Initialization modules across CIFAR-100 Split,
CIFAR-100 Superclass, and TinyImageNet datasets. The table reports accuracy (ACC) and capacity (CAP) metrics, demonstrating the
impact of each component on performance and resource utilization.

Group Mask Initialization CIFAR-100 Split CIFAR-100 Superclass TinyImageNet

ACC (%) ↑ CAP (%) ↓ ACC (%) ↑ CAP (%) ↓ ACC (%) ↑ CAP (%) ↓
✗ ✗ 76.38 99.13 61.79 80.93 69.06 92.03
✓ ✗ 76.98 65.97 62.04 54.25 70.13 82.39
✓ ✓ 77.29 63.51 62.56 50.38 70.99 80.26

further reinforcing the effectiveness of the approach; (3) Fur-
thermore, Figure 2b illustrates that, throughout the entire
training process, PGM exhibits a higher degree of overlap in
model parameters between tasks, leading to more efficient
knowledge transfer. This results in a reduction in the depen-
dence on newly introduced parameters, in contrast to WSN,
which shows a greater reliance on task-specific parameters.
Such behavior suggests that PGM is more adept at retaining
and reusing previously learned knowledge, thereby improv-
ing its ability to generalize across tasks while minimizing
the cost of learning new tasks.

4.3. Ablation study

Effectiveness of Each Component: Table 2 provides a
detailed summary of the ablation studies conducted across
multiple datasets, highlighting the individual and combined
contributions of the Group and Mask Initialization mod-
ules to the overall performance of PGM. The Group mod-
ule plays a pivotal role in optimizing parameter allocation,
thereby enhancing both the model’s capacity and accuracy
by efficiently utilizing available network resources. This
module is particularly effective in balancing model size
with performance, making it well-suited for scenarios with
resource constraints. In contrast, the mask initialization
module plays a crucial role in enhancing accuracy, espe-
cially in the context of subsequent tasks, as illustrated in
Figure 2d. By offering an adaptive and structured starting
point for mask optimization, it ensures efficient parameter
usage for task-specific adaptations, minimizing task inter-
ference and reducing the risk of catastrophic forgetting. The
consistent performance improvements observed across a va-
riety of datasets highlight the complementary nature of these
two components. Together, they enable PGM to achieve
both high accuracy and efficient resource utilization, estab-
lishing a robust framework for incremental learning. This
highlights the essential role of integrating both modules
to effectively tackle the dual challenges of preserving task
performance while managing model capacity.

Different Group Size: In the PGM framework, the size of
each group plays a critical role in determining model perfor-

mance. Theoretically, as outlined in 3.2, larger group sizes
tend to yield better results. However, empirical evidence
reveals that beyond a certain value of K, performance tends
to plateau, as shown in Figure 2c. Furthermore, it is not req-
uisite for each group to select a fixed number of parameters.
When K = Mix, the model allows for dynamic selection of
parameter sizes across different group combinations, lead-
ing to enhanced performance. This flexibility contributes to
more effective utilization of network resources, optimizing
both task-specific adaptation and overall model efficiency.

Adaptability to Diverse Training Paradigms: Parameter
isolation methods for mask selection can be broadly catego-
rized into two primary approaches. The three-stage training
paradigm, represented by PackNet (Mallya & Lazebnik,
2018), consists of sequential steps: training the entire net-
work, selecting an optimal mask, and subsequently fine-
tuning the selected sub-network. In contrast, the iterative
training paradigm, as employed in WSN (Kang et al., 2022),
integrates sub-network updates directly within the training
process, enabling a more dynamic adaptation to task-specific
requirements. As summarized in Table 3, PGM exhibits
strong adaptability to both training paradigms. Neverthe-
less, the three-stage training approach exhibits limitations in
knowledge reuse across tasks, resulting in increased overall
parameter overhead and suboptimal resource efficiency. In
contrast, the iterative training approach not only achieves
superior accuracy but also significantly reduces capacity
utilization, underscoring its effectiveness in optimizing pa-
rameter efficiency and computational resources.

Table 3. Comparison of training modes on the CIFAR-100 Super-
class dataset in terms of ACC and CAP, where higher ACC and
lower CAP indicate better performance and efficiency.

Training Mode ACC (%) ↑ CAP (%) ↓
Three-stage training 62.42 76.26

Iterative training 62.56 65.97
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Figure 2. Performance comparison across tasks. (a) Accuracy comparison across tasks, showing the performance differences in accuracy
between WSN and our proposed method across different tasks. (b) Capacity comparison across tasks, illustrating the capacity used after
training different tasks by WSN and our proposed method, as well as the overlap between the current and previous tasks. (c) Performance
and compressed capacity variations with different K values, showing that larger group sizes improve accuracy until performance plateaus.
(d) Comparison of PGM with state-of-the-art methods, highlighting PGM’s superior accuracy and efficiency.

4.4. Further Analysis

Computational Efficiency: The proposed method empha-
sizes a balance between computational efficiency and perfor-
mance, offering practical advantages without significantly
increasing time consumption. As depicted in Figure 4a,
PGM consistently outperforms some methods such as Pack-
Net, SupSup, and WSN in terms of convergence speed
across various benchmark datasets. This result highlights
PGM’s ability to deliver superior performance with only a
marginal increase in computational time. Furthermore, Fig-
ure 4a illustrates the time consumption for different values
of K. Notably, even as K increases, the time required grows
only slightly, reflecting the method’s capability to evaluate a
larger number of parameter combinations without imposing
a significant computational burden. These findings under-
line PGM’s scalability and its ability to optimize parameters
effectively while maintaining time efficiency, making it a
robust and feasible solution for tasks.

Parameter Dependency: Figure 4b provides an in-depth
analysis of parameter dependency patterns in convolutional
layers. The results demonstrate that these dependencies
predominantly follow a localized structure, with interac-
tions primarily concentrated among adjacent parameters.
Although broader dependencies occasionally manifest, the
overall trend indicates that parameter interactions are largely
confined to local neighborhoods. This observation suggests
that, in most scenarios, global parameter dependencies may
not require extensive consideration, thereby simplifying op-
timization processes and facilitating more efficient model
design strategies. Moreover, the localized nature of de-
pendencies implies that leveraging localized optimization
techniques can be highly effective, reducing computational
complexity without compromising performance. Figure 2c
further corroborates this insight by illustrating that as the
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(c) Task 5 - Fc1 layer
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(d) Task 5 - Conv1 layer

Figure 3. Visualization of MASK distributions across tasks in dif-
ferent layers of the CIFAR100Superclass dataset.

value of K increases beyond a certain threshold, the model’s
performance stabilizes and exhibits diminishing sensitivity
to additional increases. This trend underscores the effec-
tiveness of optimizing local dependencies without the need
for exhaustive exploration of global interactions, highlight-
ing the scalability and efficiency of the proposed approach.
Analysis of other layers is obtained in Appendix D.

Task Differentiability: Transforming task incremental
learning (TIL) into a class incremental learning frame-
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Figure 4. Comprehensive Evaluation of PGM. (a) Computational efficiency comparison highlights PGM’s scalability. (b) Dependency
patterns within a layer showing localized correlations. (c, d) Confusion matrices illustrating task ID prediction using OOD scores for
WSN and PGM, respectively, showing improved accuracy with an optimal sub-network.

work presents notable challenges, with effective Out-of-
Distribution (OOD) detection (Liu et al., 2020; Xu & Yang,
2025) being crucial for accurate task identification during
inference (Lin et al., 2024). Figures 4c and 4d illustrate
the confusion matrices for task ID prediction, where OOD
scores are computed by feeding input samples into each
model and selecting the one with the highest energy score
from class logits, as proposed in (Liu et al., 2020). Com-
pared to WSN, PGM demonstrates a clearer diagonal struc-
ture in the confusion matrix, indicating improved task dif-
ferentiation. This result suggests that PGM’s sub-network
selection strategy enhances task ID prediction accuracy by
better capturing task-specific features and reducing task
interference. These findings highlight the importance of
optimizing sub-network selection to improve task differenti-
ation in class incremental learning scenarios. More results
can be found in the appendix E.

Different Layer Parameter Distribution: We visualize the
parameter distribution across two tasks (Task1 and Task5)
and different layers (Conv1 and Fc1) in the CIFAR100 Su-
perclass dataset. The probabilities, including p(j), which
denotes the likelihood of selecting a specific number of pa-
rameters within a group, and the probability of selecting
a particular combination pattern, are defined in the meth-
ods section. As shown in Figure 3, different layers exhibit
distinct distribution patterns. Convolutional layers, which
share parameters within local receptive fields, tend to have
more parameters within each group, whereas the dense con-
nectivity of fully connected layers results in fewer corre-
lated parameters per group. Additionally, during incremen-
tal learning, convolutional layers exhibit higher parameter
reuse compared to fully connected layers, leading to fewer
parameters retained per group in later tasks. Additional
visualizations of distributions for other tasks are provided
in the appendix C.

5. Related Work
5.1. Incremental learning

To mitigate catastrophic forgetting (CF) in Incremen-
tal learning (IL), various methods have been proposed.
Regularization-based approaches penalize changes to impor-
tant parameters to preserve knowledge from previous tasks
(Kirkpatrick et al., 2020; Lee et al., 2020), while rehearsal-
based methods retain and replay key samples to support the
learning of new tasks without forgetting prior ones (Yoon
et al., 2022; Chaudhry et al., 2019). Distinct from these
approaches, parameter isolation methods allocate distinct
parameters to each task, ensuring that updates for new tasks
do not interfere with those assigned to prior tasks, thereby
effectively mitigating CF. For example, PackNet (Mallya
& Lazebnik, 2018) and CLNP (Golkar et al., 2019) use
l1 regularization to identify and freeze important neurons
while reinitializing unselected neurons for future tasks. Sim-
ilarly, PathNet (Fernando et al., 2017) partitions each layer
into multiple submodules and selects the optimal pathway
for each task.However, these methods rely on handcrafted
criteria to assess the importance of individual parameters,
which often results in suboptimal allocations due to their
inherent limitations. Alternatively, learnable importance
measures have been introduced, enabling dynamic evalua-
tion of parameter relevance during training and providing a
more precise approach to parameter allocation. For instance,
SPG (Konishi et al., 2023) promotes plasticity by employ-
ing parameter-level soft masking, selectively constraining
updates to critical parameters based on their relevance to
prior tasks. Similarly, WSN (Kang et al., 2022) learns task-
specific subnetworks by jointly optimizing binary masks and
reusing weights from prior tasks, enabling the identification
of compact and effective subnetworks for each task.
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6. Conclusion
In this paper, we improve parameter selection in IL by ac-
counting for parameter dependencies. Unlike traditional
methods that independently score parameters, PGM models
the selection process as a probabilistic sampling process,
grouping parameters and allowing for joint optimization.
PGM utilizes Gumbel-Softmax to enable efficient mask se-
lection. Our theoretical demonstrates that incorporating pa-
rameter dependencies enhances subnetwork selection, lead-
ing to more effective utilization of model capacity. The
experimental results on datasets validate the superiority
of PGM over existing IL techniques. Future work could
explore further optimizations of mask selection processes,
including the integration of more complex dependency struc-
tures or alternative optimization strategies.
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A. Detailed Derivation of Error Combination Selection Method
To provide a more detailed derivation of the error differences between the Top-k selection and combination selection
methods, we start with the fundamentals of model selection, constructing a mathematical model step by step to derive the
error difference. By analyzing the sources of error, we can better understand how each method behaves in the selection
process.

Scoring Model and Error

For each parameter θi (i = 1, 2, . . . , N ), there exists a true score TrueScore(θi). Due to the presence of scoring errors, the
actual score of each parameter is represented as:

Score(θi) = TrueScore(θi) + ∆i

where ∆i is the error associated with the true score, assumed to follow a Gaussian distribution ∆i ∼ N (0, σ2), with zero
mean and variance σ2.

Error Analysis of Top-k Selection

In the Top-k method, we select parameters based on their independent scores. Let the set of selected parameters be Stop-k,
chosen by ranking the scores:

Stop-k = TopK(Score(θ1),Score(θ2), . . . ,Score(θN ))

We then compute the set of incorrectly selected parameters Swrong, i.e., those that were chosen but do not belong to the ideal
set S∗. Due to the scoring errors, parameters θ∗i and θj may be misselected. The condition for θj to be misselected is:

Score(θj) > Score(θi)

Substituting the scoring error model, we get:

TS(θj) + ∆j > TS(θi) + ∆i

Simplifying:
∆j −∆i > TS(θi)− TS(θj)

Assuming ∆j −∆i ∼ N (0, 2σ2), the probability of error selection Pwrong(i, j) is:

Pwrong(i, j) = Pr (∆j −∆i > TS(θi)− TS(θj))

This probability can be expressed using the cumulative distribution function of the standard normal distribution:

Pwrong(i, j) = Φ

(
−TS(θi)− TS(θj)√

2σ

)

Error Analysis of Combination Selection

In the combination selection method, we evaluate all possible combinations of k parameters. Let the selected parameter
combination be C, and its score is:

Scombo = arg max
C∈Ck

N

∑
i∈C

Score(θi)

In combination selection, we consider the errors of all k parameters. For each combination, we have:∑
i∈C

Score(θi) =
∑
i∈C

(TS(θi) + ∆i)
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This combined score follows a Gaussian distribution:

∑
i∈C

Score(θi) ∼ N

(∑
i∈C

TS(θi), kσ2

)

Thus, the probability of error selection for the combination is:

Pwrong(C) = Φ

(
−
∑

i∈S∗ TS(θi)−
∑

i∈C TS(θi)√
kσ

)
This indicates that, due to the combination of k parameters, the error variance is reduced by a factor of

√
k, leading to a

smaller overall error.

B. Implementation Details
For a fair comparison, we strictly adhere to the experimental settings outlined in (Kang et al., 2022), including the use of
identical backbone networks for the corresponding datasets. Specifically, we employ a modified version of AlexNet, as
proposed by (Serrà et al., 2018), for the Split CIFAR-100 dataset, and a modified LeNet architecture, as described by (Saha
et al., 2021), for the CIFAR-100 Superclass dataset. For Split TinyImageNet, we adopt the backbone introduced by (Kang
et al., 2022), which comprises a 4-layer convolutional structure followed by 3 fully connected layers. In line with (Kang
et al., 2022), we use the Adam optimizer with a momentum of 0.9 for initial model training. Each task is trained for 50
epochs on CIFAR-100 and 40 epochs on Split TinyImageNet. All experiments are implemented using PyTorch on a system
equipped with four NVIDIA 4090 GPUs.

C. Different Layer and Parameter Distribution
Here, we visualize all layers of LeNet on the CIFAR Superclass across different tasks. The results confirm our previous
observation: convolutional layers exhibit greater parameter sharing compared to other layers.
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(a) Task 1 - conv1
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(b) Task 1 - conv2
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(c) Task 1 - fc1
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(d) Task 1 - fc2
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(e) Task 5 - conv1
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(f) Task 5 - conv2
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(g) Task 5 - fc1
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(h) Task 5 - fc2

Figure 5. Weight distributions across multiple tasks
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D. Parameter Dependency Across Different Layers
This section presents the parameter dependencies in different layers. As illustrated in the figure below, the convolutional
layer exhibits stronger parameter correlations compared to the fully connected layer, where dependencies are more sparse
and dispersed. This observation highlights the structured nature of convolutional filters, which inherently capture local
patterns and share spatial correlations, whereas fully connected layers tend to have less structured parameter interactions.

(a) Convolutional Layer (Conv) (b) Fully Connected Layer (FC)

Figure 6. Visualization of parameter dependency across different layers. The left subfigure illustrates dependencies within the convolutional
layer, while the right subfigure shows those in the fully connected layer.

E. Extend to Class-Incremental Learning
The proposed method is developed under the task-incremental learning setting, where parameter isolation methods prevents
forgetting via task-specific subnetworks. However, as noted in (Kim et al., 2022), forgetting may re-emerge in the more
challenging class-incremental learning (CIL) setting due to the absence of task identity during inference. To address this,
(Kim et al., 2022) introduces OOD detection for implicit task inference, and (Lin et al., 2024) further enhances it with
rehearsal samples. Following the protocol in (Lin et al., 2024), we replace their mask selection strategy with ours, and
compare against parameter-isolation baselines without additional memory. As shown in Table 4, our method achieves
competitive performance in the CIL setting.

Table 4. CIL performance comparison on CIFAR100-10 using DeiT as the backbone. “Last” denotes the accuracy after learning the final
task, and “AIA” denotes the average incremental accuracy.

Method WSN PGM

Last ↑ AIA ↑ Last ↑ AIA ↑
Energy 62.21 75.19 64.43 77.06
TPL 67.89 80.93 69.55 81.78

F. Generalization to Non-Vision tasks
To ensure fairness and comparability, we adopt the same task setup as in (Kang et al., 2022; Hu et al., 2024), which are
widely used as baselines for evaluating incremental learning performance. To further assess the generalization capability
of our method beyond the vision domain, we extend it to an audio classification task using the KineticsSounds dataset
(Arandjelovic & Zisserman, 2017). The dataset is divided into five incremental tasks, denoted as KS-5. As shown in Table 1,
PGM outperforms WSN in both accuracy and parameter capacity when using the ResNet18 architecture.
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Table 5. Performance evaluation on the KS dataset.
Method WSN PGM

Acc ↑ CAP ↓ Acc ↑ CAP ↓
KS-5 69.43 76.44 70.44 57.41

G. Generalization across Model Architectures
To further assess the generalization capability of PGM across different architectures, we evaluate it on both DeiT and
ResNet18 following the settings in (Lin et al., 2024; Kang et al., 2022), and compare it with parameter-isolation methods
that incur no additional storage cost and exhibit no forgetting. As shown in Table 6, PGM consistently demonstrates
robust performance across all evaluated configurations. Notably, the greater parameter reduction observed on ResNet
architectures can be attributed to the larger number of convolutional layers, where modeling parameter dependency tends to
be more effective. In contrast, Transformer-based architectures contain more linear layers, where parameter dependency are
inherently weaker, leading to comparatively smaller gains.

Table 6. Comparative performance evaluation across different model architectures on CIFAR100-10.

Method WSN PGM

Acc ↑ CAP ↓ Acc ↑ CAP ↓
ResNet18 73.51 90.66 75.37 71.59
DeiT 93.78 69.46 94.21 60.65
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